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The chemistry and biology of mitochondria, in particular, the HaN

effects of intracellular reactive oxygen species (ROS, superoxide j Ko Lﬁ Bh

radicals and HO,) that are byproducts of the oxidative phospho- o N’ YN‘“/“\N H N THQ
rylation cascade, is under intense stdd3ellular injury, aging, and N H g H \T:'O ~
death, as well as suspended animation, neuro-, and cardioprotectiorogl\ oy o 4 N- N1

are influenced by events in the mitochondrial membrane that lead -"~-NJ~ .NW/E\N,IL.N N\I/&/' o,

to an imbalance in ATP production and @nsumptior?.Recently, Ph H\TJ o \’.\H /f\_\ o 4 Amino-TEMPO
dysregulated electron transport and generation of ROS were linked Gramicidin S (GS) (4-AT)

NH,
to a mitochondria-specific phospholipid, cardiolipin (CL), and  Fjgure 1. Gramicidin S (targeting sequence in blue) and 4-AT.
involvement of CL oxidation products in apopto3iditroxide Scheme 1. Synthesis of Peptide Conjugates?

radicals prevent the formation of ROS, particularly superoxide, due

to their reduction by the mitochondrial electron transport to H N . . o

hydroxylamine radical scavengérblitroxides also exert superoxide \Corsops _a. Boc‘” z OH —~ Boc\u _ o
H H

dismutase and catalase activittebus offering additional protective
benefits against oxidative stress. However, delivery of sufficient
amounts of nitroxides into mitochondria has proven diffiéult.

A selective delivery of TEMPOto mitochondria could lead to
a therapeutically beneficial reduction of ROS; therefore, we have

c
investigated the use of conjugatesf 4-amino-TEMPO (4-AT) MEOY\N)j/\ N %/7;/ TN )i N

and employed as targeting sequence fragments of the membrane-
active antibiotic GS as well as the corresponding alkene isosteres NHCbZ NHCbZ
(Figure 1)10 We selected the LeBPhe-Pro-Val-Orn fragment of d
GS as the targeting sequence, because it encompass@dttire Boc-Leu-PPhe-Pro-Val- °”“Cbz*o""e _B;cHN
motif that directs most of the polar functionality of the peptide \FO
strand into the core, and acylated the amino functions of Leu and L
Orn in order to reduce GS-related cytotoxicity. A;g/ \f(\“

The preparation offf)-alkene dipeptide isosteBewas based on
our Zr/Zn methodology (Scheme B)Hydrozirconatiof?® of alkyne aCondmons @) (,) C@ZrHC| Me,Zn, N-Boc- ,Sovgff;’r‘;m,mme then
11 with CpZrHCI followed by transmetalation to M&n and TBAF, 74%; (ii) Ac0, TEA, DMAP, 94%; (iii) K2COs, MeOH, quant.;
addition ofN-Boc-isovaleraldimin® afforded diastereomeric allylic ~ (b) |(_i|) EESS\;I\I/légtin E%indénﬁneE(QCNZ%%NSWZ% gl-lf(;e]fhyl-Z-dbut_er;e;

I m z T |

amides, which were separated after desilylation and acetylation. A (NC)NaO: (IS Py AT( ED)C H%Bt DMAP: 50, 99%: 5b, 9“90/322e() )4(')”
two-step oxidation o provided peptide isostel® The segment EDC, DMAP, 91%.
assembly of3 and tripeptide H-Pro-Val-Orn(Cbz)-OMe was ac-
complished using EDC as a coupling agent. Saponificatiofiaof
followed by coupling with 4-AT afforded the desired conjugate
5a, in which the LeuPPhe peptide bond had been replaced with
an ()-alkene. Conjugatesh and5c were prepared by coupling of
pentapeptidetb!® and isostere to 4-AT.

We used EPR spectroscopy to monitor the cellular delivery and

presence oba resulted not only in its integration but also in its
one-electron reduction, as evidenced by a significant increase in
the magnitude of the EPR signal intensity upon addition of a one-
electron oxidant, ferricyanide (Figure 2B). Thus, not only delivery
but also the reduction &aand5b occurred in MEC mitochondria.
We tested the ability ddaand5b to prevent intracellular superoxide

. S o . generation (by flow cytometric monitoring of oxidation of dihy-
metabolic fate obaand5h. Distinctive characteristic triplet signals droethidium (DHE) to a fluorescent ethidium) and protect cells

of nitroxide radi_cals (with hyperfine_ splitting constants of 16.6 G_) against apoptosis triggered by actinomycin D (ActD). Bstrand
were detected in mouse ernbryonlc_ce_lls (MECs) incubated with 5b (but not 4-AT) completely inhibited ActD-induced--fold)

10_ #M 5a as well as in mltochondr'la 'SOIat?d, from thgse cells increase of superoxide production in MECs (Figure 3A). Apoptotic
(l'=|gur.e 2)- The Cyt,OS,OHC fraction did not elicit E,PR S'Q”a's of cell responses were documented using three biomarkers: (1)
no||tro><|de raﬂmals. S||m|lar results4v'\2?rre dgdbserve(fjfwnh clo njugb_t_e Externalization of phosphatidylserine (PS) on the cell surface (by
.( ata .”gt s 0\;\|/n). n C.OmLaSt’d - | ! bnqt N efCt"\\/l/Eé pa_m't'ﬁn flow cytometry using an FITC-labeled PS-binding protein, annexin
Into_either cells or mitochondria. Incubation o s in the V); (2) Activation of caspase-3 (by cleavage of its specific substrate,
Z-DEVD-AMC); and (3) DNA fragmentation (by flow cytometry

#ggggmgﬂ: gﬁ gﬂslfgﬁ}n%mal and Occupational Health, of propidium iodide stained DNA). ActD effectively induced
$ Department of Critical Care Medicine. apoptosis, as revealed by an increased number of annexin V-positive

12460 = J. AM. CHEM. SOC. 2005, 127, 12460—12461 10.1021/ja0536791 CCC: $30.25 © 2005 American Chemical Society
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B from specific interactions with cellular and mitochondrial mem-
1000 ~ % branes, we tested nitroxide conjugabe, which is similarly
lipophilic (cLogP 5.5) but does not have a complete targeting
moiety. We found thabc was ineffective in protecting MECs
3 K,Fe(CN), against ActD-induced apoptosis (Figure 3B,C). Thus, the-GS
B 4K, Fe(CN), peptidyl targeting structure is required for anti-apoptotic activity
of nitroxide conjugates. Since the reduction5af and 5b could
also cause inhibition of mitochondrial oxidative phosphorylation,
we tested whether ATP levels were changed in cells treated with
these compounds. At concentrations at which anti-apoptotic effects
were maximal $a, 10 uM, Figure 3E), nitroxide conjugates did
Cells  Mitochondria Cyosol - 2688 not cause significant changes in the cellular ATP level (Figure 3F).
106 Sa Thus, synthetic GSpeptidyl conjugates migrate into cells and
Figure 2. EPR-based analysis of integration and reduction of nitroxide mjtochondria, where they are reduced (likely by electron-transport-
GS—peptidyl conjugates in MECs. Cells (10 million/mL) were incubated ing proteins) and exert protection against apoptosis. Previously, spin

with 10 uM of 4-AT or 5a for 15 min. Recovered nitroxide radicals in . . S . &,
whole cells, mitochondria, or cytosol fractions were resuspended in PBS trapping nitrones have demonstrated promise in aging res&arch.

in the presence or absence of 2 mMFA¢(CN) (JEOL-RE1X EPR Our radical scavenger delivery approach is based on the use of
spectrometer under the following conditions: 3350 G center field; 25 G specific GS-derived mitochondria targeting sequetcasd offers
scan range; 0.79 G field modulation, 20 mW microwave power; 0.1 s time gjmilar potential for future anti-apoptotic interventidis:18

®
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constant; 4 min scan time). (A) Representative EPR specBaiofdifferent
fractions of MECs in the presence ofsKe(CN)}. (B) Assessment of Agknovyledgment. We thank DARPA (W81XWH-05-2-0026)
integrated nitroxidesn(= 3); *p < 0.01 vs KFe(CN); #p < 0.01 vs5a for financial support.
under the same conditions. Supporting Information Available: Experimental procedure¥
3 and®®C spectra, and procedures for biological assays. This material is
_E¥A - 30 ‘ B . available free of charge via the Internet at http://pubs.acs.org.
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